Gravity waves on shear flows

By JOHN MILES

Cecil H. and Ida M. Green Institute of Geophysics and Planetary Physics, University of California, San Diego, La Jolla, CA 92093-0225, USA
(Received 5 August 2000 and in revised form 19 January 2001)
The eigenvalue problem for gravity waves on a shear flow of depth h and noninflected velocity profile $U(y)$ (typically parabolic) is revisited, following Burns (1953) and Yih (1972). Complementary variational formulations that provide upper and lower bounds to the Froude number F as a function of the wave speed c and wavenumber k are constructed. These formulations are used to improve Burns's longwave approximation and to determine Yih's critical wavenumber k_{*}, for which the wave is stationary $(c=0)$ and to which k must be inferior for the existence of an upstream running wave.

1. Introduction

Straight-crested, linear gravity waves of wavenumber $k>0$ and wave speed c on the surface of a shear flow of ambient depth h and velocity $U(y)$ are governed by the Rayleigh equation

$$
\begin{equation*}
(U-c)\left(\phi^{\prime \prime}-k^{2} \phi\right)-U^{\prime \prime} \phi=0 \quad(0<y<h, \quad \prime \equiv \mathrm{~d} / \mathrm{d} y) \tag{1.1}
\end{equation*}
$$

and the bottom and free-surface boundary conditions

$$
\begin{equation*}
\phi=0 \quad(y=0), \quad(U-c)^{2} \phi^{\prime}=g \phi \quad(y=h) \tag{1.2a,b}
\end{equation*}
$$

where $\phi(y) \exp [\mathrm{i} k(x-c t)]$ is a complex stream function. Following Burns (1953) and Yih (1972), I consider this eigenvalue problem for a velocity profile for which

$$
\begin{equation*}
U(0)=0, \quad U(h) \equiv U_{1}>0, \quad U^{\prime}(h)=0, \quad U^{\prime \prime}(y)<0 . \tag{1.3a-d}
\end{equation*}
$$

The simplest solution of (1.3) is the parabolic profile

$$
\begin{equation*}
U(y)=U_{1} y(2 h-y) / h^{2}, \tag{1.4}
\end{equation*}
$$

which is realized for a nearly inviscid flow down a slightly inclined plane.
The basic problem is to determine the characteristic relation $f(c, k, F)=0$ or, as proves more convenient, $G=G(c, k)$, among the dimensionless parameters

$$
\begin{equation*}
c=c / U_{1}, \quad k=k h, \quad F=U_{1} /(g h)^{1 / 2}, \quad G=g h / U_{1}^{2} \equiv 1 / F^{2} . \tag{1.5a-d}
\end{equation*}
$$

The still-water wave speed and drift speed are given by

$$
\begin{equation*}
C \equiv C / U_{1}=[(G / k) \tanh k]^{1 / 2} \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
D \equiv D / U_{1}=c \mp C\binom{c>1}{c<0} \tag{1.7}
\end{equation*}
$$

for waves moving to the right/left (down/upstream). The dispersion relation $c=c(k)$ is implicitly determined by $G=G(c, k)$, and the corresponding group velocity is given by

$$
\begin{equation*}
c_{g}=\frac{\mathrm{d}}{\mathrm{~d} k}[k c(k)]=c-k\left(\frac{\partial G / \partial k}{\partial G / \partial c}\right) . \tag{1.8}
\end{equation*}
$$

Burns (1953) solves (1.1)-(1.4) in the long-wave limit $k \downarrow 0$. Yih (1972) shows that the eigenvalue problem for prescribed k and F admits one solution with $c>1$ for all $k>0$ and a second solution with $c<0$ if and only if $0 \leqslant k<k_{*}$, where k_{*} is a critical value of k for which the wave is stationary. There are no other solutions; accordingly, the singular point at $U=c$ lies outside the physical domain, and the admissible running waves are stable. The stationary $(c=0)$ wave, for which the singular point $U=0$ lies on the lower boundary, is exceptional; however, the singular solution of the Rayleigh equation then may be excluded (see $\S 4$).

In the present investigation, I establish complementary variational formulations that provide upper and lower bounds to $G=G(c, k)$. As a first, brief example, I improve, and provide a measure of the truncation error in, Burns's long-wave ($k \ll 1$) approximation. As a more detailed example, I consider the stationary wave and derive variational approximations to the critical wavenumber k_{*} for the parabolic profile (1.4). These last results are relevant to the earlier controversy over the existence of upstream waves for large Froude numbers (see Benjamin 1962; Velthuizen \& Wijngaarden 1969; Yih 1972; and Yih \& Schultz 1999). In particular, the limit $F \uparrow \infty$ in (4.2) yields the asymptote

$$
\begin{equation*}
k_{*} h \sim\left(g h /\left\langle U^{2}\right\rangle\right)^{1 / 2} \equiv 1 /\langle F\rangle \tag{1.9}
\end{equation*}
$$

where $\langle F\rangle$ is the Froude number based on the r.m.s. flow speed $\left\langle U^{2}\right\rangle^{1 / 2}$.

2. Variational formulations

Introducing the normalized streamline inclination θ and the dimensionless perturbation pressure $\tilde{\omega}$ through the transformations (Miles 1962)

$$
\begin{equation*}
\phi(y) / U_{1} h=(U-c) \theta(y)=(U-c)^{-1} \tilde{\omega}^{\prime}(y), \quad k^{2} \tilde{\omega}(y)=Q \theta^{\prime}(y) \tag{2.1a,b}
\end{equation*}
$$

where

$$
\begin{equation*}
y=y / h, \quad U(y)=U(y) / U_{1}, \quad Q=(U-c)^{2} \tag{2.2a-c}
\end{equation*}
$$

we transform (1.1) and (1.2a,b) to the complementary Sturm-Liouville systems

$$
\begin{align*}
& \left(Q \theta^{\prime}\right)^{\prime}-k^{2} Q \theta=0 \quad(0<y<1, \quad \prime \equiv \mathrm{~d} / \mathrm{d} y) \tag{2.3}\\
& (U-c) \theta=0 \quad(y=0), \quad Q \theta^{\prime}=G \theta \quad(y=1) \tag{2.4a,b}
\end{align*}
$$

and

$$
\begin{gather*}
\left(Q^{-1} \tilde{\omega}^{\prime}\right)^{\prime}-k^{2} Q^{-1} \tilde{\omega}=0 \tag{2.5}\\
(U-c)^{-1} \tilde{\omega}^{\prime}=0 \quad(y=0), \quad G \omega^{\prime}=k^{2} Q \tilde{\omega} \quad(y=1), \tag{2.6a,b}
\end{gather*}
$$

where c, k, and G are defined by (1.5), and either $c<0$ or $c>1$.

Multiplying (2.3) by θ, integrating by parts over $0<y<1$, invoking ($2.4 a, b$), and dividing by $\theta_{1}^{2} \equiv \theta^{2}(1)$, we obtain the variational integral

$$
\begin{equation*}
G=\frac{1}{\theta_{1}^{2}} \int_{0}^{1}\left(\theta^{\prime 2}+k^{2} \theta^{2}\right) Q \mathrm{~d} y \tag{2.7}
\end{equation*}
$$

which is stationary with respect to variations of θ about the true solution of (2.3) and (2.4), is invariant under a scale transformation of θ (so that we may choose $\theta_{1}=1$), and provides an upper bound to the true value of G. Similarly,

$$
\begin{equation*}
\frac{1}{G}=\frac{1}{k^{2} \tilde{\omega}_{1}^{2}} \int_{0}^{1} \frac{\left(\tilde{\omega}^{\prime 2}+k^{2} \tilde{\omega}^{2}\right)}{Q} d y \tag{2.8}
\end{equation*}
$$

provides a lower bound to the true value of G.

3. Long-wave approximation for running waves

Burns's (1953) solution of (2.3) and (2.4) for $k=0$ is given by

$$
\begin{equation*}
\theta=\theta_{1} \frac{R(y)}{R_{1}}, \quad R(y)=\int_{0}^{y} \frac{\mathrm{~d} y}{Q}, \quad R_{1} \equiv R(1) \tag{3.1a-c}
\end{equation*}
$$

Adopting (3.1a) as a trial function in (2.7), we obtain

$$
\begin{equation*}
G=G_{0}(c)+k^{2} G_{1}(c), \quad G_{0}=\frac{1}{R_{1}}, \quad G_{1}=\frac{1}{R_{1}^{2}} \int_{0}^{1} Q R^{2} \mathrm{~d} y . \tag{3.2a-c}
\end{equation*}
$$

The error in (3.1a) is $O\left(k^{2}\right)$, whence that in the variational approximation (3.2a) is $O\left(k^{4}\right)$. We remark that (3.2) remains valid for $c \uparrow 0$, in which limit it reduces to the dominant term in (4.3).

Combining (1.6), (1.7) and (3.2a), we obtain

$$
\begin{equation*}
D=D_{0}(c)+k^{2} D_{1}(c), \quad D_{0}=c \mp G_{0}^{1 / 2}, \quad D_{1}=\mp \frac{1}{2}\left(G_{0}^{-1 / 2} G_{1}-\frac{1}{3} G_{0}^{1 / 2}\right)\binom{c>1}{c<0} \tag{3.3a-c}
\end{equation*}
$$

It follows from (3.3b) and (3.2b) that

$$
\begin{equation*}
0<D_{0}<\langle U\rangle \text { for } 0<-c<\infty \tag{3.4a}
\end{equation*}
$$

and

$$
\begin{equation*}
1>D_{0}>\langle U\rangle \text { for } 1<c<\infty, \tag{3.4b}
\end{equation*}
$$

where $\langle U\rangle$ is the dimensionless, depth-averaged flow speed.
The results $(3.2 b, c)$ and $(3.3 b, c)$ are plotted in figures 1 and 2 for the parabolic profile (1.4), for which

$$
\begin{equation*}
U=2 y-y^{2} \tag{3.5}
\end{equation*}
$$

4. Stationary wave

The stationary wave $(c=0)$ is distinguished by the presence of the Rayleighequation singularity of exponents 0 and 1 at the lower boundary. The boundary condition (2.4a) then requires that the former solution be rejected, and hence that $\theta(y)$ be regular at $y=0$.

Figure 1. $G_{0}(c)(-)$ and $G_{1}(c)(---)$, as determined by $(3.2 b, c)$ for the parabolic profile (1.4).

Considering first the long-wave regime, we expand the solution of (2.3) and (2.4), with $Q=U^{2}$ therein, in powers of k^{2} to obtain the trial function

$$
\begin{equation*}
\theta=1-k^{2} \int_{y}^{1} \frac{P}{U^{2}} \mathrm{~d} y+O\left(k^{4}\right), \quad P \equiv \int_{0}^{y} U^{2} \mathrm{~d} y \tag{4.1a,b}
\end{equation*}
$$

Substituting (4.1) into (2.7) and integrating by parts, we obtain the upper bound

$$
\begin{equation*}
G=k^{2}\left[P_{1}-k^{2} \int_{0}^{1}(P / U)^{2} \mathrm{~d} y+k^{4} \int_{0}^{1} U^{2}\left(\int_{y}^{1}(P / U)^{2} \mathrm{~d} y\right)^{2} \mathrm{~d} y\right]+O\left(k^{8}\right) \tag{4.2}
\end{equation*}
$$

in which $P_{1}=\left\langle U^{2}\right\rangle$ and the error is of the order of the square of that in the trial function. The limit $k \downarrow 0(F \uparrow \infty)$ of (4.2) yields (1.9).

For the parabolic profile (3.5), (4.2) reduces to

$$
\begin{equation*}
G=\frac{8}{15} k^{2}-0.06036 k^{4}+0.00194 k^{6}+O\left(k^{8}\right) \tag{4.3}
\end{equation*}
$$

the inversion of which yields (see figure 3)

$$
\begin{equation*}
k_{*}^{2}=\frac{15}{8} G+0.3180 G^{2}+0.1450 G^{3}+O\left(G^{4}\right) \tag{4.4}
\end{equation*}
$$

Figure 2. $D_{0}(c)(-)$ and $D_{1}(c)(---)$, as determined by $(3.3 b, c)$ for the parabolic profile (1.4).

The asymptotic solution of (1.1) and (1.2a) for $k \uparrow \infty$ (which is equivalent to that for uniform flow), $\phi \sim \sinh k y / \sinh k$, yields the short-wave trial function

$$
\begin{equation*}
\theta(y)=\frac{\sinh k y}{U(y) \sinh k} \tag{4.5}
\end{equation*}
$$

Substituting (4.5) into (2.7), integrating by parts, and invoking $U_{1}^{\prime}=0$, we obtain

$$
\begin{align*}
G & =\frac{1}{\sinh ^{2} k} \int_{0}^{1}\left[k^{2} \cosh 2 k y-k \frac{U^{\prime}}{U} \sinh 2 k y+\left(\frac{U^{\prime} \sinh k y}{U}\right)^{2}\right] d y \tag{4.6a}\\
& =k \operatorname{coth} k\left[1-k^{-2} I\left(-U^{\prime \prime} / U\right)\right] \tag{4.6b}
\end{align*}
$$

where

$$
\begin{align*}
I[f(y)] & =\frac{2 k}{\sinh 2 k} \int_{0}^{1} f(y) \sinh ^{2} k y \mathrm{~d} y \tag{4.7a}\\
& \sim \frac{1}{2} \sum_{n=0}^{\infty}(-)^{n}(2 k)^{-n}\left[(\mathrm{~d} / \mathrm{d} y)^{n} f(y)\right]_{y=1} \quad(k \uparrow \infty) \tag{4.7b}
\end{align*}
$$

Turning to the complementary variational approximation, we substitute (4.5) into

Figure 3. $k_{*}(G)$, as approximated by (4.4) for $G<2.1$ and (4.12) for $G>2.1$.
(2.1b) to obtain the trial function

$$
\begin{equation*}
\tilde{\omega}=\frac{U \cosh k y-k^{-1} U^{\prime} \sinh k y}{\cosh k} . \tag{4.8}
\end{equation*}
$$

Substituting (4.8) into (2.8) and proceeding as in (4.6), we obtain

$$
\begin{align*}
\frac{1}{G} & =\operatorname{sech}^{2} k \int_{0}^{1}\left[\cosh 2 k y-\frac{U^{\prime \prime}}{U} \frac{\sinh ^{2} k y}{k^{2}}+\left(\frac{U^{\prime \prime}}{U}\right)^{2} \frac{\sinh ^{2} k y}{k^{4}}\right] \mathrm{d} y \tag{4.9a}\\
& =k^{-1} \tanh k\left\{1+k^{-2} I\left(-U^{\prime \prime} / U\right)+k^{-4} I\left[\left(U^{\prime \prime} / U\right)^{2}\right]\right\} \tag{4.9b}
\end{align*}
$$

For the parabolic profile (3.5), equations (4.6b), (4.7b) and the inverse of (4.9b) yield the lower and upper bounds (in each of which the first two terms are exact)

$$
\begin{equation*}
G=k-k^{-1}-\frac{1}{2} k^{-3}-k^{-5}+O\left(k^{-7}\right) \quad \text { and } \quad G \sim k-k^{-1}-\frac{3}{2} k^{-3}+k^{-5}+O\left(k^{-7}\right) . \tag{4.10a,b}
\end{equation*}
$$

Empirical evidence (Miles 1962) suggests that the average of these bounds,

$$
\begin{equation*}
G=k-k^{-1}-k^{-3}+O\left(k^{-7}\right), \tag{4.11}
\end{equation*}
$$

is superior to either of them. The inverse of (4.11)

$$
\begin{equation*}
k_{*}=G+G^{-1}+O\left(G^{-5}\right) \tag{4.12}
\end{equation*}
$$

which intersects (4.4) at $G=2.1$ and differs therefrom by less than 3% for $1.8<G<$ 2.4 , is plotted in figure 3.

This work was supported in part by the Division of Ocean Sciences of the National Science Foundation Grant OCE98-03204, and by the Office of Naval Research Grant N00014-92-J-1171.

REFERENCES

Benjamin, T. B. 1962 The solitary wave in a stream with an arbitrary distribution of vorticity. J. Fluid Mech. 12, 97-115.

Burns, J. C. 1953 Long waves in running water. Proc. Camb. Phil. Soc. 49, 695-706.
Miles, J. W. 1962 A note on the inviscid Orr-Sommerfeld equation. J. Fluid Mech. 13, 427-432.
Velthuizen, H. G. M. \& Wisngaarden, L. van 1969 Gravity waves on a non-uniform flow. J. Fluid Mech. 39, 817-829.
Yir, C.-S. 1972 Surface waves in flowing water. J. Fluid Mech. 51, 209-220.
Yih, C.-S. \& Schultz, W. W. 1999 Linear and nonlinear waves in flowing water. In Fluid Dynamics at Interfaces (ed. W. Shyy \& R. Narayanan), pp 234-245. Cambridge University Press.

