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Gravity waves on shear flows
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The eigenvalue problem for gravity waves on a shear flow of depth h and non-
inflected velocity profile U(y) (typically parabolic) is revisited, following Burns (1953)
and Yih (1972). Complementary variational formulations that provide upper and
lower bounds to the Froude number F as a function of the wave speed c and
wavenumber k are constructed. These formulations are used to improve Burns’s long-
wave approximation and to determine Yih’s critical wavenumber k∗, for which the
wave is stationary (c = 0) and to which k must be inferior for the existence of an
upstream running wave.

1. Introduction
Straight-crested, linear gravity waves of wavenumber k > 0 and wave speed c on

the surface of a shear flow of ambient depth h and velocity U(y) are governed by the
Rayleigh equation

(U − c)(φ′′ − k2φ)−U ′′φ = 0 (0 < y < h, ′ ≡ d/dy) (1.1)

and the bottom and free-surface boundary conditions

φ = 0 (y = 0), (U − c)2φ′ = gφ (y = h), (1.2a, b)

where φ(y) exp [ik(x− ct)] is a complex stream function. Following Burns (1953) and
Yih (1972), I consider this eigenvalue problem for a velocity profile for which

U(0) = 0, U(h) ≡ U1 > 0, U ′(h) = 0, U ′′(y) < 0. (1.3a–d)

The simplest solution of (1.3) is the parabolic profile

U(y) = U1y(2h− y)/h2, (1.4)

which is realized for a nearly inviscid flow down a slightly inclined plane.
The basic problem is to determine the characteristic relation f(c , k , F) = 0 or, as

proves more convenient, G = G(c , k), among the dimensionless parameters

c = c/U1, k = kh, F = U1/(gh)
1/2, G = gh/U2

1 ≡ 1/F2. (1.5a–d)

The still-water wave speed and drift speed are given by

C ≡ C/U1 = [(G/k) tanh k]1/2 (1.6)

and

D ≡ D/U1 = c ∓ C
(
c > 1

c < 0

)
(1.7)
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for waves moving to the right/left (down/upstream). The dispersion relation c = c(k)
is implicitly determined by G = G(c , k), and the corresponding group velocity is
given by

cg =
d

dk
[kc(k)] = c − k

(
∂G/∂k

∂G/∂c

)
. (1.8)

Burns (1953) solves (1.1)–(1.4) in the long-wave limit k ↓ 0. Yih (1972) shows that
the eigenvalue problem for prescribed k and F admits one solution with c > 1 for all
k > 0 and a second solution with c < 0 if and only if 0 6 k < k∗, where k∗ is a critical
value of k for which the wave is stationary. There are no other solutions; accordingly,
the singular point at U = c lies outside the physical domain, and the admissible
running waves are stable. The stationary (c = 0) wave, for which the singular point
U = 0 lies on the lower boundary, is exceptional; however, the singular solution of
the Rayleigh equation then may be excluded (see § 4).

In the present investigation, I establish complementary variational formulations
that provide upper and lower bounds to G = G(c , k). As a first, brief example, I
improve, and provide a measure of the truncation error in, Burns’s long-wave (k � 1)
approximation. As a more detailed example, I consider the stationary wave and derive
variational approximations to the critical wavenumber k∗ for the parabolic profile
(1.4). These last results are relevant to the earlier controversy over the existence
of upstream waves for large Froude numbers (see Benjamin 1962; Velthuizen &
Wijngaarden 1969; Yih 1972; and Yih & Schultz 1999). In particular, the limit F ↑ ∞
in (4.2) yields the asymptote

k∗h ∼ (gh/〈U2〉)1/2 ≡ 1/〈F〉, (1.9)

where 〈F〉 is the Froude number based on the r.m.s. flow speed 〈U2〉1/2.

2. Variational formulations

Introducing the normalized streamline inclination θ and the dimensionless pertur-
bation pressure ω̃ through the transformations (Miles 1962)

φ(y)/U1h = (U − c)θ(y) = (U − c)−1ω̃′(y), k2ω̃(y) = Qθ′(y), (2.1a, b)

where

y = y/h, U(y) = U(y)/U1, Q = (U − c)2, (2.2a–c)

we transform (1.1) and (1.2a, b) to the complementary Sturm–Liouville systems

(Qθ′)′ − k2Qθ = 0 (0 < y < 1, ′ ≡ d/dy), (2.3)

(U − c)θ = 0 (y = 0), Qθ′ = Gθ (y = 1), (2.4a, b)

and

(Q−1ω̃′)′ − k2Q−1ω̃ = 0, (2.5)

(U − c)−1ω̃′ = 0 (y = 0), Gω′ = k2Qω̃ (y = 1), (2.6a, b)

where c , k , and G are defined by (1.5), and either c < 0 or c > 1.
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Multiplying (2.3) by θ, integrating by parts over 0 < y < 1, invoking (2.4a, b), and
dividing by θ2

1 ≡ θ2(1), we obtain the variational integral

G =
1

θ2
1

∫ 1

0

(θ′2 + k2θ2)Q dy , (2.7)

which is stationary with respect to variations of θ about the true solution of (2.3) and
(2.4), is invariant under a scale transformation of θ (so that we may choose θ1 = 1),
and provides an upper bound to the true value of G. Similarly,

1

G
=

1

k2ω̃2
1

∫ 1

0

(ω̃′2 + k2ω̃2)

Q
dy (2.8)

provides a lower bound to the true value of G.

3. Long-wave approximation for running waves
Burns’s (1953) solution of (2.3) and (2.4) for k = 0 is given by

θ = θ1

R(y)

R1

, R(y) =

∫ y

0

dy

Q
, R1 ≡ R(1). (3.1a–c)

Adopting (3.1a) as a trial function in (2.7), we obtain

G = G0(c) + k2G1(c), G0 =
1

R1

, G1 =
1

R2
1

∫ 1

0

QR2 dy . (3.2a–c)

The error in (3.1a) is O(k2), whence that in the variational approximation (3.2a) is
O(k4). We remark that (3.2) remains valid for c ↑ 0, in which limit it reduces to the
dominant term in (4.3).

Combining (l.6), (1.7) and (3.2a), we obtain

D = D0(c) + k2D1(c), D0 = c ∓ G1/2
0 , D1 = ∓ 1

2
(G
−1/2
0 G1 − 1

3
G

1/2
0 )

(
c > 1

c < 0

)
.

(3.3a–c)
It follows from (3.3b) and (3.2b) that

0 < D0 < 〈U〉 for 0 < −c < ∞ (3.4a)

and

1 > D0 > 〈U〉 for 1 < c < ∞, (3.4b)

where 〈U〉 is the dimensionless, depth-averaged flow speed.
The results (3.2b, c) and (3.3b, c) are plotted in figures 1 and 2 for the parabolic

profile (1.4), for which

U = 2y − y2. (3.5)

4. Stationary wave
The stationary wave (c = 0) is distinguished by the presence of the Rayleigh-

equation singularity of exponents 0 and 1 at the lower boundary. The boundary
condition (2.4a) then requires that the former solution be rejected, and hence that
θ(y) be regular at y = 0.
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Figure 1. G0(c) (——) and G1(c) (– – –), as determined by (3.2b, c) for the parabolic profile (1.4).

Considering first the long-wave regime, we expand the solution of (2.3) and (2.4),
with Q = U2 therein, in powers of k2 to obtain the trial function

θ = 1− k2

∫ 1

y

P

U2
dy + O(k4), P ≡

∫ y

0

U2 dy . (4.1a, b)

Substituting (4.1) into (2.7) and integrating by parts, we obtain the upper bound

G = k2

[
P1 − k2

∫ 1

0

(P/U)2 dy + k4

∫ 1

0

U2

(∫ 1

y

(P/U)2 dy

)2

dy

]
+ O(k8), (4.2)

in which P1 = 〈U2〉 and the error is of the order of the square of that in the trial
function. The limit k ↓ 0 (F ↑ ∞) of (4.2) yields (1.9).

For the parabolic profile (3.5), (4.2) reduces to

G = 8
15
k2 − 0.06036k4 + 0.00194k6 + O(k8), (4.3)

the inversion of which yields (see figure 3)

k2
∗ = 15

8
G+ 0.3180G2 + 0.1450G3 + O(G4). (4.4)
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Figure 2. D0(c) (——) and D1(c) (– – –), as determined by (3.3b, c) for the parabolic profile (1.4).

The asymptotic solution of (1.1) and (1.2a) for k ↑ ∞ (which is equivalent to that
for uniform flow), φ ∼ sinh ky/ sinh k , yields the short-wave trial function

θ(y) =
sinh ky

U(y) sinh k
. (4.5)

Substituting (4.5) into (2.7), integrating by parts, and invoking U ′1 = 0, we obtain

G =
1

sinh2 k

∫ 1

0

[
k2 cosh 2ky − k U

′

U
sinh 2ky +

(
U ′ sinh ky

U

)2
]

dy (4.6a)

= k coth k[1− k−2I(−U ′′/U)], (4.6b)

where

I[f(y)] =
2k

sinh 2k

∫ 1

0

f(y) sinh2 ky dy (4.7a)

∼ 1

2

∞∑
n=0

(−)n(2k)−n[(d/dy)nf(y)]y=1 (k ↑ ∞). (4.7b)

Turning to the complementary variational approximation, we substitute (4.5) into
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Figure 3. k∗(G), as approximated by (4.4) for G < 2.1 and (4.12) for G > 2.1.

(2.1b) to obtain the trial function

ω̃ =
U cosh ky − k−1U ′ sinh ky

cosh k
. (4.8)

Substituting (4.8) into (2.8) and proceeding as in (4.6), we obtain

1

G
= sech2k

∫ 1

0

[
cosh 2ky − U

′′

U

sinh2 ky

k2
+

(
U ′′

U

)2
sinh2 ky

k4

]
dy (4.9a)

= k−1 tanh k{1 + k−2I(−U ′′/U) + k−4I[(U ′′/U)2]}. (4.9b)

For the parabolic profile (3.5), equations (4.6b), (4.7b) and the inverse of (4.9b) yield
the lower and upper bounds (in each of which the first two terms are exact)

G = k − k−1 − 1
2
k−3 − k−5 + O(k−7) and G ∼ k − k−1 − 3

2
k−3 + k−5 + O(k−7).

(4.10a, b)

Empirical evidence (Miles 1962) suggests that the average of these bounds,

G = k − k−1 − k−3 + O(k−7), (4.11)

is superior to either of them. The inverse of (4.11)

k∗ = G+ G−1 + O(G−5), (4.12)

which intersects (4.4) at G = 2.1 and differs therefrom by less than 3% for 1.8 < G <
2.4, is plotted in figure 3.
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